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It is shown that for a small sphere freely suspended in a linear shear flow a t  small 
Reynolds numbers, the Nusselt number N is given by N = { 1 - aP3 + o(@)}-l, where 
P is the PBclet number. For any given type of shear flow, the numerical value of the 
constant a can be obtained from a general expression derived by Batchelor (1979). The 
corresponding result for a particle of arbit.rary shape is N/No = (1 - aNo P3 + O(P*)]-l, 
where No is the Nusselt number for pure conduction. 

1. Introduction 
Heat or mass transfer from small solid particles to the surrounding fluid plays an 

important role in many physical operations, and hence the problem of predicting the 
rate of such a transfer under a variety of conditions has received a certain amount of 
attention in the literature. 

In  the case of small isolated particles, for which the particle Reynolds number 
is small enough for inertia effects to be negligible, the process is governed by a single 
dinlensionless parameter, the so-called Pkclet number P equal to the product of the 
Reynolds number and the Prandtl number for heat transfer (or the Schmidt number 
for mass transfer). When P is small, conductive effects predominate over convection 
and hence the Nusselt number N ,  i.e. the dimensionless rate of transfer, equals No, its 
value for pure conduction. The additional rate of transfer due to convection can then 
be obtained as a perturbation in P but, unfortunately, the analysis is not quite as 
straightforward as might appear at  first glance. 

As is well known by now, the root of the difficulty lies in the fact that the conductive 
solution is not uniformly valid throughout the flow field, but applies only within an 
inner region whose dimension relative to the size of the particle is O(P-I), if the 
particle is fixed in a uniform flow, and O(P-4) if the particle is freely suspended in a 
linear shear flow. It is necessary, therefore, to develop appropriate inner and outer 
solutions which must then be matched within the region of overlap. 

Using the technique of inner and outer expansions, as first developed by Proudman 
& Pearson (1957), Acrivos & Taylor (1962) showed that for the case of an isothermal 
sphere held fixed in an inertialess flow field, uniform a t  infinity, 

where 

with Q being the rate of heat transfer, a the radius of the sphere, T, and T,,respectively, 
the temperatures of the sphere and of the ambient fluid, k the thermal conductivity, K 

N = 1 + &P+ +P21n P + 0.4i5P2 t $P31n P + 0(P3), (1 .1)  

N = &/4nak(T,- T,) and P 5 Ua/K, (1.2) 
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the thermal diffusivity, and U the speed of the uniform flow. Brenner (1963) extended 
( 1 .  I )  to a fixed particle of arbitrary shape for which he found that 

N/No = 1 +~N0P+~NofP21nP+O(P2) ,  (1.3) 

where BnpaUf, withp being the viscosity, is the magnitude of the force exerted by the 
fluid on the particle, and a is half the maximum diameter of the particle. 

The reason why such a general result can be derived is that, in the outer region, the 
velocity appearing in the convective term of the energy equation can be approxi- 
mated by that of the undisturbed flow with an error which is O(P),  because the 
velocity disturbance due to  the particle decays like O(r-l)  in Stokes flow and is there- 
fore O(P)  in the outer region. Consequently, the first term of the outer solution, from 
which the O(P)  correction to N is obtained, is independent of t’he particle geometry 
except for a proportionality constant equal to No. We wish to remark at  this point that, 
as already stated by Brenner (1963), there exists no unique way of separating the 
respective contributions of the P21n P and P 2  terms in (1.3), since the characteristic 
dimension a in the definition of P is arbitrary. 

On the other hand, for the case of a sphere freely suspended in a simple shea,r flow, 
Frankel & Acrivos ( 1  968) showed that 

N = 1 + 0-257Pt + o(P*), (1.4) 

where P = ya2/K with y being the shear rate of the undisturbed flow. Batchelor (1979) 
extended the analysis to an arbitrary particle freely suspended in a general linear flow 
and found that 

where a is a number whose value depends on the definition of P and on the type of 
linear flow being considered. Batchelor (1979) derived a general expression for deter- 
mining a-cf. his equation (2.19) - from which he calculated specific values for a two- 
dimensional and for an axisymmetric pure straining motion in addition to that of a 
simple shear flow already found by Frankel & Acrivos (1968). 

As was the case for a fixed particle in a uniform flow, the additional increase in X due 
to convection arises to first order - here to O(Ph) - from the solution of the energy 
equation in which the velocity in the convective term has been set equal to that of the 
undisturbed linear flow. In  contrast, to that case, however, the disturbance velocity 
due to a freely suspended particle decays like r-2 and hence, since the appropriate 
length scale in the outer region is here O(P-)), the error incurred in the solution of the 
energy equation in the outer region by neglecting the disturbance velocity is only 
O(P8). We should expect, therefore, that one or two additional terms could be added to 
(1.5) using only the currently available solutions to the energy equation in the two 
regions. This we shall proceed to do. 

We shall deal separately with the cases of a sphere and of a particle of arbitrary shape. 

N/No = 1 + &No P* + o(PJ), (1.5) 

2. Heat transfer from a sphere freely suspended in a steady linear flow 

turbed velocity field of the form 
With the origin a t  the centre of the freely-suspended sphere, we consider an undis- 

uiW’ = Gij xj Eii xi + +eijk Qi x,, Gii = E . .  aa = 0, (2.1) 
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where E, and Qi are, respectively, the constant rate of st.rain tensor and the constant 
vorticity of the ambient flow. The dimensionless form of the energy equation is 

V: T = Pu, a T / a ~ i ,  (2.2) 

where T is the temperature normalized such that it equals unity a t  r = 1 and vanishes 
a t  in finit y . 

Now, from the work of Frankel & Acrivos (1968) and of Batchelor (1979) we already 
know that, within the inner region 1 < r < O(P-l), 

while, within the outer region, P-4 < r < co, 
T = P4$(p, xJr ,  Eii, QJ, p = P b ,  

where $ is the fundamental solution of 

whose asymptotic form as p -+ 0 is given by 

$-+ llP-a+o(P). 

However, as remarked earlier, the velocity disturbance due to the presence of the 
particle is O(r-3) smaller than the ambient velocity field, i.e. the error incurred in the 
outer region on replacing ui by Giixj is O(p%). Therefore, the temperature in the outer 
region can be expressed as 

where F ( P )  is an as yet unknown function of P, with P(0)  = 1. 

temperature T is 

T = PbF(P) {$ + O(Pt)}, (2.5) 

Returning next to the inner region, we see that the appropriate expansion for the 

T = -+aPd --1 +PT,+a@T,+o(P$), 
r (3 

where, in view of ( 2 . 2 ) ,  Tl and T2 satisfy 

(2 .6 )  
1 

VgT,,, = -- r3 U i  Xi 

with 

the particle, i.e. 

= 0 at r = 1. 
Let us now define ( Tl) as being the average of Tl over the surface of a sphere enclosing 

and similarly for (T,) and ($), where dQ is here the solid angle. On integrating (2.6) 
over the surfa,ae of a sphere of radius r > 1, we therefore obtain, with ni being the unit 
outer normal to that sphere, that 

Thus, we have within the inner region that 

(T) = 1 + N  - - I  +o(P+), c 1 



302 A .  Acrivos 

where N is the unknown Nusselt number. Moreover, since the above must match with 
the corresponding average of the outer solution as given by (2 .5 ) ,  we conclude that the 
Ofp) and O(p2)  terms of (2 .4 )  must vanish when integrated over the surface of a sphere- 
this can also be proved by an independent argument - so that, within the outer region, 

On matching (2 .7 )  and (2 .8 )  we then obtain that 

1.e. 
F ( P )  = N(P)  = [i - 0rP4 + o(H)]-~, 

N = l t a P J + a 2 P + a 3 H + o ( P 4 ) .  ( 2 - 9 )  

I n  other words, we have been able to add two more terms to  ( 1 . 5 )  for the case of a 
sphere. 

3. Heat transfer from an arbitrary particle freely suspended in a steady 
linear flow 

We shall next consider the case of a non-spherical particle with, however, a sufficient 
amount of symmetry, for example, an ellipsoid, so that its translational velocity 
relative to  the fluid is still zero. Hence, with the origin of the fixed co-ordinate system 
at the centre of the particle, the ambient velocity is still given by (2 .1 ) .  On the other 
hand, the temperature is now time-dependent, on account of the fact that  the particle 
rotates, so that the energy equation is 

v; T = ~ { u ,  aT/axi + aT/at ) .  (3.1) 

Let us denote the conductive solution as To which, for r 9 1 ,  has the asymptotic form 

where A k l  is a symmetric, traceless second order tensor which is a function of the time t 
since the particle orientation continually changes. Of course, No is time-independent. 

The inner solution now takes the form 

T = To+NoaPB(To- l ) + P T , + N , a P * T , + o ( @ ) ,  (3 .3)  

PT,, = ui aTo/ax, + aTo/at, (3.4) 

(3.5) 

where $is as before the fundamental solution of (2.3), while $l is also a solution of (2.3) 
with, however, an O ( P - ~ )  singularity a t  the origin since it must match with the second 
term of ( 3 . 2 ) .  Moreover, since the O(PB) term of the inner solution is harmonic, the 
O ( P - ~ )  term of must also be harmonic for the two expressions to  match, i.e. it must 
be of the form B t x , / p 3  where B, is a vector. The latter must, however, be linear in A ,  
and be a function of Eij and Qj, which is clearly impossible. Hence Bk = 0, and we con- 
clude that the O(P4) term of the inner solution is as shown in (3.3). 

where Tl, satisfy 

with Tl, = 0 at r = 1 .  I n  the outer region, the appropriate expression for T is 

T = No Pb{ 1 + No aPb + N i  a2P + o(P)}  {$ + P$, + O(P*)}, 
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A particular solution of (3.4) with To given by (3.2) is, for r $ 1, 

No Eii xi xi/4r + O(r-l) (3.6) 

and hence the asymptotic form of T, which matches with (3.5) and (2.4) is 

Tl+ No Eij xi xj/4r - Ng a2 + O(r-l) for r 9 1. (3.7) 

TO determine the O(P) contribution to N ,  we follow Brenner (1963) and multiply (3.4), 
for T,, by To and then integrate the resulting expression over the volume V bounded 
by a sphere cr of radius r 9 1 and by the particle. On applying the divergence theorem 
and taking into account the boundary conditions on B, the surface of the particle, and 
the fact that To is harmonic and equal to unity on B ,  we obtain that 

+ & Iu ui ni T i  dS + 

On substituting (3.2) and (3.7) we then find for the first integral on the right-hand side 
of (3.8) 

while the second and t,hird integrals are both O(r-1). All the integrals that are O(r-,), 
k 2 1, must of course sum up to zero. 

The last term in (3.8) can also be written as 

where V is now the whole volume exterior to the particle. The integral clearly exists 
and is independent of the particle orientation since it involves only the conduction 
solution. Thus, the expression in (3.9) will vanish, and, consequently, 

N / N o  = 1 +do Pi  + a2Ng P + O(P9) = [ 1 - aN0 Pi  + O(@)]-'. (3.10) 

It might be tempting at  this point to expect that, as was the case for the sphere, the 
next term in (3.10) would equal a2K: P3, but, unfortunately, this is not, in general, 
true. To be sure, although (3.8) applies for T, as well, the first two integrals on the right- 
hand side of (3.8) give rise to two additional O(1) terms which were absent before. 
Specifically, since T, must match with (3.5), we conclude that the O(p2) term in the 
expansion of $ must be a second degree harmonic, i.e. it  must be of the form Diixixj 
where Dij  is a symmetric, traceless second order tensor which is a function of Eii and 
Qj. Therefore, the asymptotic expression for T2 in the overlap region is 

T2 + Dii xi xi + No Eii xi xi/4r - Ng a2 - C + O(r-l), 

where C is an 0(1) constant, linear in A,,, which would arise in general from the 
expansion of in (3.5) as p + 0. The two additional terms are then C and - $Djk Akj. 

Both of these are linear in A,, and therefore depend on the instantaneous orientation 
of the particle, so that to calculate x, the time-averaged value of N ,  one would have to 
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obtain the average of &dkt by following the motion of the particle. Although, admittedly, 
this could be achieved for certain specific cases, i t  does not appear possible a t  this stage 
to derive a general result. 

We close by briefly considering particles of a more general shape for which the con- 
ductive solution T,, has the form 

(3.11) 

while, owing to the presence of a relative velocity between the particle and the ambient 
fluid, the undisturbed velocity is now 

2 ~ : ~ )  = E,, "G, + S E , , ~  R, X, + ET,, (3.12) 

where the constant translational velocity U, is a function of E,, and a,. We wish to  
ascertain whether the presence of the two vectors A, and U, will affect the results we 
have obtained so far. 

First of all, we note t h a t ,  in the outer region, the appropriate expression for T is, in 
lieu of ( 3 4 ,  

(3.13) 
where $2 satisfies 

T = A; Pb(I + No aP4 + . . .>{@+Ph@, + O(P)) ,  

(3.14) 

i.e. (2.3) with an inhomogeneous term. Clearly is linear in V,, and because of the 
matching requirement with T,, the O(P) term of the inner solution, it must be of the 
form 

$, = &U,xk/r+O(p)  as p+O. 

That the expression for $, as p + 0 cannot contain an O( 1) term independent of xi can 
easily be seen by noting that this term, a scalar, must be linear in Ui and be a fiinction 
only of Eij  and Rj, an obvious impossibility. Thus, for r 9 1 ,  we obtain in lieu of (3.7) 

TI --f No Ei j  xi xj/4r + No U, x,/2r - N i  a2 + O(r - l )  

ofwhich the new term does not contribute to the O(1) integralson theright-ha,ndsideof 
(3.8). Similarly, all the O( 1) integrals involving A ,  also vanish, as can easily be verified. 
We therefore conclude that the expression for N ,  as given by (3. lo), remains valid for 
all particles. 
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